Data processing
Provides methods for the ATHENA
project for procssing input files,
transforming data, writing reports and plots.
Reads data files and transforms data
compress_weights(model_str)
Compresses weights/constants to simplify the model string
Source code in src/athenage/utilities/data_processing.py
432 433 434 435 436 437 |
|
construct_nodes(modelstr)
Returns node objects representing the network
Parameters: modelstr: String containing GE network Returns nodes constructed from the model
Source code in src/athenage/utilities/data_processing.py
560 561 562 563 564 565 566 567 568 569 570 571 572 |
|
construct_nodes_nn(modelstr)
Returns node objects representing the network
Parameters: modelstr: String containing GE neural network model Returns nodes constructed from the model
Source code in src/athenage/utilities/data_processing.py
606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 |
|
construct_nodes_sr(modelstr)
Returns node objects representing the network
Parameters: modelstr: String containing GE symbolic regression model Returns nodes constructed from the model
Source code in src/athenage/utilities/data_processing.py
574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 |
|
format_number(num, max_decimals=2)
Formats a number as a string with a maximum number of decimals, only if needed.
Source code in src/athenage/utilities/data_processing.py
428 429 430 |
|
generate_splits(ncvs, fitness_type, df, have_test_file=False, test_df=None, rand_seed=1234)
Generate splits for training and testing based on number of cross-validation intervals requested.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ncvs |
int
|
number of splits (cross-validations) |
required |
fitness_type |
str
|
for 'r-squared' split into specified number of folds, otherwise split balancing classes in data |
required |
df |
DataFrame
|
dataset to use for splitting |
required |
have_test_file |
bool
|
when true use the test_df as the tesing set |
False
|
test_df |
DataFrame
|
when using a test_file contains the testing dataset |
None
|
rand_seed |
int
|
controls split |
1234
|
Returns:
Name | Type | Description |
---|---|---|
train_splits |
ndarray
|
2-D array of indexes to use in traininig |
test_splits |
ndarray
|
2-D array of indexes to use in testing |
df |
DataFrame
|
dataset to use with these indexes, concatenated for training and testing when test dataset provided |
Source code in src/athenage/utilities/data_processing.py
390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
|
prepare_split_data(df, train_indexes, test_indexes)
Create and return data arrays for training and testing using indexes passed.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
data set to split |
required |
train_indexes |
ndarray
|
rows in dataset to make training set |
required |
test_indexes |
ndarray
|
rows in dataset to make test set |
required |
Returns:
Name | Type | Description |
---|---|---|
X_train |
ndarray
|
x values in training |
Y_train |
ndarray
|
y values in training |
X_test |
ndarray
|
x values for testing |
Y_test |
ndarray
|
y values for testing |
Source code in src/athenage/utilities/data_processing.py
344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 |
|
process_continfile(fn, scale, missing=None, included_vars=None)
Read in continuous data and construct dataframe from values
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fn |
str
|
Phenotypes (outcomes) filename |
required |
scale |
bool
|
normalize values if true |
required |
missing |
str
|
identifies any missing data in file |
None
|
included_vars |
list[str]
|
restrict set to only variables (column names) in list |
None
|
Returns:
Type | Description |
---|---|
DataFrame
|
pandas dataframe |
Source code in src/athenage/utilities/data_processing.py
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 |
|
process_genofile(fn, encoding, missing=None, included_vars=None)
Read in genotype data and construct dataframe from values
Parameters:
Name | Type | Description | Default |
---|---|---|---|
fn |
str
|
Phenotypes (outcomes) filename |
required |
encoding |
str
|
Genotype encoding type |
required |
missing |
str
|
identifies missing data in file |
None
|
included_vars |
list[str]
|
restrict set to only variables in list |
None
|
Returns:
Name | Type | Description |
---|---|---|
data |
DataFrame
|
pandas dataframe |
geno_map |
dict
|
dictionary with new label as key, original label as value |
Source code in src/athenage/utilities/data_processing.py
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 |
|
process_grammar_file(grammarfn, data)
Reads grammar file into string and adds all x variables present in dataframe
Parameters:
Name | Type | Description | Default |
---|---|---|---|
grammarfn |
str
|
grammar filename to read and modify |
required |
data |
DataFrame
|
dataset to be used with the grammar |
required |
Returns:
Name | Type | Description |
---|---|---|
updated_grammar |
str
|
grammar text modified for number of variables in data |
Source code in src/athenage/utilities/data_processing.py
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 |
|
process_var_colormap(colorfn=None, node_color='lightgray', var_default='white')
Create color map for graphical output of networks. Files format is tab-delimited in order of category, color, inputs
Parameters:
Name | Type | Description | Default |
---|---|---|---|
colorfn |
str
|
name of file to process, when no fn provided only the network nodes (PA,PD,PM,PS,PAND,PNAND,POR,PXOR,PNOR) are included |
None
|
node_color |
str
|
color for the operator nodes |
'lightgray'
|
var_default |
str
|
Default colors for unspecified variables |
'white'
|
Returns:
Name | Type | Description |
---|---|---|
color_map |
ColorMapping
|
node name as key and color as value |
Source code in src/athenage/utilities/data_processing.py
222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
read_input_files(outcomefn, genofn, continfn, out_scale=False, contin_scale=False, geno_encode=None, missing=None, outcome=None, included_vars=None)
Read in data and construct pandas dataframe
Parameters:
Name | Type | Description | Default |
---|---|---|---|
outcomefn |
str
|
Phenotypes (outcomes) filename |
required |
genofn |
str
|
SNP values filename |
required |
continfn |
str
|
any continuous data filename |
required |
out_scale |
bool
|
scale outcome values from 0 to 1.0 |
False
|
contin_scale |
bool
|
scale each continuous variable from 0 to 1.0 |
False
|
geno_encode |
str
|
encode genotype data. options are 'add_quad' and 'additive' |
None
|
outcome |
str
|
column header in continfn to use for 'y' |
None
|
included_vars |
list[str]
|
list of variable names to include in analysis; all others excluded |
None
|
Returns:
Name | Type | Description |
---|---|---|
dataset_df |
DataFrame
|
pandas dataframe |
inputs_map |
dict
|
dictionary with new label as key, original label as value |
unmatched |
list
|
list of IDs that are not in all input files |
Source code in src/athenage/utilities/data_processing.py
20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
|
rename_variables(df)
Rename variables in dataframe to be indexed version of x
Parameters:
Name | Type | Description | Default |
---|---|---|---|
df |
DataFrame
|
dataframe to alter |
required |
Returns:
Name | Type | Description |
---|---|---|
vmap |
dict
|
new names are keys and original names are values |
Source code in src/athenage/utilities/data_processing.py
289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 |
|
reset_variable_names(model, vmap)
Replace x variables with names in variable map
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model |
str
|
evolved model containing variables with indexed x values ('x[0],x[1],...) |
required |
vmap |
dict
|
dict with key as x variable and value as name to replace with |
required |
Returns:
Name | Type | Description |
---|---|---|
string |
str
|
model string with variable names updated |
Source code in src/athenage/utilities/data_processing.py
311 312 313 314 315 316 317 318 319 320 321 |
|
write_plots(basefn, best_models, var_map, inputs_map, color_map)
Produces png file displaying best models with one per cross-validation.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
basefn |
str
|
name of file to write |
required |
best_models |
list[Individual]
|
deap Individual objects from run |
required |
var_map |
dict
|
key is value (x[0],x[1],etc) and value is name from dataset adjusted for multiple occurences (Ott encoding) |
required |
inputs_map |
dict
|
key is name (adjusted for Ott encoding), value is original column name in input dataset |
required |
color_map |
ColorMapping
|
contains colors to use in plot |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Source code in src/athenage/utilities/data_processing.py
681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 |
|
write_summary(filename, best_models, score_type, var_map, fitness_test, nmissing)
Produce summary file reporting results
Parameters:
Name | Type | Description | Default |
---|---|---|---|
filename |
str
|
name of file to write |
required |
best_models |
list[Individual]
|
deap Individual objects from run |
required |
score_type |
str
|
test used for scoring individuals |
required |
var_map |
dict
|
key is value (x[0],x[1],etc) and value is original column name in dataset |
required |
fitness_test |
list[float]
|
contains testing fitness scores for each individual |
required |
nmissing |
list[int]
|
number of missing rows for individual |
required |
Returns:
Type | Description |
---|---|
None
|
None |
Source code in src/athenage/utilities/data_processing.py
499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 |
|