Skip to content

Alg setup

Provides methods for the ATHENA project for setting DEAP structures used in software and functions used by DEAP during evolutionary algorithm.

Setup of DEAP structures and additional functions used in GENN algorithm

alt_fitness(fitness)

Return dict containing alternate fitness functions for reporting

Args:
fitness: name of fitness metric used

Returns:

Type Description
dict

dict

Source code in src/athenage/genn/alg_setup.py
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
def alt_fitness(fitness: str) -> dict:
    """Return dict containing alternate fitness functions for reporting

        Args:
        fitness: name of fitness metric used 

    Returns:
        dict
    """

    methods={}
    if fitness != 'r-squared':
        methods['balanced_acc']=fitness_balacc
        methods['auprc']=fitness_auprc
        methods['auc']=fitness_auc
        methods['f1_score']=fitness_f1
        methods.pop(fitness, None)

    return methods

configure_toolbox(fitness, selection, crosstype='match', init='sensible')

Configure the DEAP toolbox for controlling GE algorithm

Parameters:

Name Type Description Default
fitness str

SNP values filename

required
selection str

type of selection operator

required
crosstype str

type of crossover operator

'match'
init str

scale outcome values from 0 to 1.0

'sensible'

Returns:

Type Description
Toolbox

DEAP base.Toolbox configured for a GE run

Source code in src/athenage/genn/alg_setup.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def configure_toolbox(fitness: str, selection: str, crosstype:str ='match',
                      init:str ='sensible') -> base.Toolbox:
    """Configure the DEAP toolbox for controlling GE algorithm

    Args:
        fitness: SNP values filename
        selection: type of selection operator
        crosstype: type of crossover operator
        init: scale outcome values from 0 to 1.0

    Returns:
        DEAP base.Toolbox configured for a GE run
    """

    toolbox = base.Toolbox()
    creator.create("FitnessMax", base.Fitness, weights=(1.0,))
    creator.create('Individual', grape.Individual, fitness=creator.FitnessMax)
    if init == 'sensible':
        toolbox.register("populationCreator", grape.sensible_initialization, creator.Individual) 
    else:
        toolbox.register("populationCreator", grape.random_initialization, creator.Individual) 

    if crosstype == 'onepoint':
        toolbox.register("mate", grape.crossover_onepoint)
    elif crosstype == 'match':
        toolbox.register("mate", grape.crossover_match)
    elif crosstype == 'block':
        toolbox.register("mate", grape.crossover_block)

    toolbox.register("mutate", grape.mutation_int_flip_per_codon)

    if fitness=='r-squared':
        if selection == 'epsilon_lexicase':
            toolbox.register("evaluate", fitness_rsquared_lexicase)
            toolbox.register("select", grape.selAutoEpsilonLexicase)#, tournsize=7)
        else:
            toolbox.register("evaluate", fitness_rsquared)
            toolbox.register("select", tools.selTournament, tournsize=2)
    elif fitness == 'balanced_acc':
        if selection=='lexicase':
            toolbox.register("evaluate", fitness_balacc_lexicase)
            toolbox.register("select", grape.selBalAccLexicase)
        else:
            toolbox.register("evaluate", fitness_balacc)
            toolbox.register("select", tools.selTournament, tournsize=2)
    elif fitness == 'auc':
        if selection=='lexicase':
            toolbox.register("evaluate", fitness_auc_lexicase)
            toolbox.register("select", grape.selBalAccLexicase)
        else:
            toolbox.register("evaluate", fitness_auc)
            toolbox.register("select", tools.selTournament, tournsize=2)
    elif fitness=='f1_score':
        if selection=='lexicase':
             toolbox.register("evaluate", fitness_f1_lexicase)
             toolbox.register("select", grape.selBalAccLexicase)
        else:
             toolbox.register("evaluate", fitness_f1)
             toolbox.register("select",tools.selTournament, tournsize=2 )
    elif fitness=='auprc':
        if selection=='lexicase':
             toolbox.register("evaluate", fitness_auprc_lexicase)
             toolbox.register("select", grape.selBalAccLexicase)
        else:
             toolbox.register("evaluate", fitness_auprc)
             toolbox.register("select",tools.selTournament, tournsize=2 )    
    else:
        raise ValueError("fitness must be fitness_rsquared or fitness_balacc")

    return toolbox

fitness_auc(individual, points)

Calculate area under the curve (AUC) as fitness for this individual using points passed

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

AUC fitness

Source code in src/athenage/genn/alg_setup.py
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
def fitness_auc(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate area under the curve (AUC)
    as fitness for this individual using points passed

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        AUC fitness
    """

    x = points[0]
    y = points[1]


    if individual.invalid == True:
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)

#         pred2 = eval(compress_weights(individual.phenotype))
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        nan_mask = np.isnan(pred)
        # assign case/control status
        pred_nonan = np.where(pred[~nan_mask] < 0.5, 0, 1)
        fitness = roc_auc_score(y[~nan_mask],pred_nonan)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

#         fitness_compressed = balanced_accuracy_score(y[~nan_mask],pred2)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        return INVALID_FITNESS,

    return fitness,

fitness_auc_lexicase(individual, points)

Calculate area under the curve (AUC) for this individual and store differences in predicted vs observed outcomes for use in lexicase selection

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

balanced accuracy fitness

Source code in src/athenage/genn/alg_setup.py
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
def fitness_auc_lexicase(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate area under the curve (AUC) for this individual and store differences in
        predicted vs observed outcomes for use in lexicase selection

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        balanced accuracy fitness
    """

    x = points[0]
    y = points[1]

    if individual.invalid == True:
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        nan_mask = np.isnan(pred)
        # assign case/control status
        pred_nonan = np.where(pred[~nan_mask] < 0.5, 0, 1)
        fitness = roc_auc_score(y[~nan_mask],pred_nonan)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

        # save individual point scores for use in lexicase selection
        full = np.copy(pred)
        full[~nan_mask] = np.where(pred[~nan_mask] < 0.5, 0, 1)
        individual.ptscores = np.absolute(y-full)


    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
        individual.ptscores = np.full(len(y), np.nan)
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    return fitness,

fitness_auprc(individual, points)

Calculate area under Precision-Recall (PR) curve as fitness for this individual using points passed

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

f1 score fitness

Source code in src/athenage/genn/alg_setup.py
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
def fitness_auprc(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate area under Precision-Recall (PR) curve as fitness for this individual using points passed

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        f1 score fitness
    """

    x = points[0]
    y = points[1]


    if individual.invalid == True:
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)

    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        nan_mask = np.isnan(pred)
        # assign case/control status
        pred_nonan = np.where(pred[~nan_mask] < 0.5, 0, 1)
        fitness = average_precision_score(y[~nan_mask],pred_nonan)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

#         fitness_compressed = balanced_accuracy_score(y[~nan_mask],pred2)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        return INVALID_FITNESS,

    return fitness,

fitness_auprc_lexicase(individual, points)

Calculate the AUPRC (area under Precision-Recall curve) for this individual and store differences in predicted vs observed outcomes for use in lexicase selection

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

auprc score fitness

Source code in src/athenage/genn/alg_setup.py
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
def fitness_auprc_lexicase(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate the AUPRC (area under Precision-Recall curve) for this individual and store differences in
        predicted vs observed outcomes for use in lexicase selection

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        auprc score fitness
    """

    x = points[0]
    y = points[1]

    if individual.invalid == True:
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        nan_mask = np.isnan(pred)
        # assign case/control status
        pred_nonan = np.where(pred[~nan_mask] < 0.5, 0, 1)
        fitness = average_precision_score(y[~nan_mask],pred_nonan)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

        # save individual point scores for use in lexicase selection
        full = np.copy(pred)
        full[~nan_mask] = np.where(pred[~nan_mask] < 0.5, 0, 1)
        individual.ptscores = np.absolute(y-full)


    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
        individual.ptscores = np.full(len(y), np.nan)
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    return fitness,

fitness_balacc(individual, points)

Calculate balanced accuracy as fitness for this individual using points passed

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

balanced accuracy fitness

Source code in src/athenage/genn/alg_setup.py
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
def fitness_balacc(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate balanced accuracy as fitness for this individual using points passed

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        balanced accuracy fitness
    """

    x = points[0]
    y = points[1]


    if individual.invalid == True:
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)

#         pred2 = eval(compress_weights(individual.phenotype))
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        nan_mask = np.isnan(pred)
        # assign case/control status
        pred_nonan = np.where(pred[~nan_mask] < 0.5, 0, 1)
        fitness = balanced_accuracy_score(y[~nan_mask],pred_nonan)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

#         fitness_compressed = balanced_accuracy_score(y[~nan_mask],pred2)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        return INVALID_FITNESS,

    return fitness,

fitness_balacc_lexicase(individual, points)

Calculate balanced accuracy fitness for this individual and store differences in predicted vs observed outcomes for use in lexicase selection

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

balanced accuracy fitness

Source code in src/athenage/genn/alg_setup.py
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
def fitness_balacc_lexicase(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate balanced accuracy fitness for this individual and store differences in
        predicted vs observed outcomes for use in lexicase selection

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        balanced accuracy fitness
    """

    x = points[0]
    y = points[1]

    if individual.invalid == True:
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        nan_mask = np.isnan(pred)
        # assign case/control status
        pred_nonan = np.where(pred[~nan_mask] < 0.5, 0, 1)
        fitness = balanced_accuracy_score(y[~nan_mask],pred_nonan)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

        # save individual point scores for use in lexicase selection
        full = np.copy(pred)
        full[~nan_mask] = np.where(pred[~nan_mask] < 0.5, 0, 1)
        individual.ptscores = np.absolute(y-full)


    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
        individual.ptscores = np.full(len(y), np.nan)
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    return fitness,

fitness_f1(individual, points)

Calculate F1 score (also known as balanced F-score or F-measure) as fitness for this individual using points passed

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

f1 score fitness

Source code in src/athenage/genn/alg_setup.py
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
def fitness_f1(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate F1 score (also known as balanced F-score or F-measure) as fitness for this individual using points passed

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        f1 score fitness
    """

    x = points[0]
    y = points[1]


    if individual.invalid == True:
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)

    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        nan_mask = np.isnan(pred)
        # assign case/control status
        pred_nonan = np.where(pred[~nan_mask] < 0.5, 0, 1)
        fitness = f1_score(y[~nan_mask],pred_nonan)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

#         fitness_compressed = balanced_accuracy_score(y[~nan_mask],pred2)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        return INVALID_FITNESS,

    return fitness,

fitness_f1_lexicase(individual, points)

Calculatethe F1 score (also known as balanced F-score or F-measure) for this individual and store differences in predicted vs observed outcomes for use in lexicase selection

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

f1 score fitness

Source code in src/athenage/genn/alg_setup.py
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
def fitness_f1_lexicase(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculatethe F1 score (also known as balanced F-score or F-measure) for this individual and store differences in
        predicted vs observed outcomes for use in lexicase selection

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        f1 score fitness
    """

    x = points[0]
    y = points[1]

    if individual.invalid == True:
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        nan_mask = np.isnan(pred)
        # assign case/control status
        pred_nonan = np.where(pred[~nan_mask] < 0.5, 0, 1)
        fitness = f1_score(y[~nan_mask],pred_nonan)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

        # save individual point scores for use in lexicase selection
        full = np.copy(pred)
        full[~nan_mask] = np.where(pred[~nan_mask] < 0.5, 0, 1)
        individual.ptscores = np.absolute(y-full)


    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
        individual.ptscores = np.full(len(y), np.nan)
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    return fitness,

fitness_rsquared(individual, points)

Calculate r-squared fitness for this individual using points passed

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

r-squared fitness

Source code in src/athenage/genn/alg_setup.py
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
def fitness_rsquared(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate r-squared fitness for this individual using points passed

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        r-squared fitness
    """
    x = points[0]
    y = points[1]

    if individual.invalid == True:
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        fitness = r_squared(y,pred)
        individual.nmissing = np.count_nonzero(np.isnan(pred))
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        fitness = INVALID_FITNESS
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        return INVALID_FITNESS,

    return fitness,

fitness_rsquared_lexicase(individual, points)

Calculate r-squared fitness for this individual and store differences in predicted vs observed outcomes for use in lexicase selection

Parameters:

Name Type Description Default
individual Individual

solution being evaluated for fitness

required
points list

2-D list containing inputs and outcome for calculating fitness points[0] contains 2-D np.ndarray of all inputs

required

Returns:

Type Description
float

r-squared fitness

Source code in src/athenage/genn/alg_setup.py
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
def fitness_rsquared_lexicase(individual: 'deap.creator.Individual', points: list) -> float:
    """Calculate r-squared fitness for this individual and store differences in
        predicted vs observed outcomes for use in lexicase selection

    Args:
        individual: solution being evaluated for fitness
        points: 2-D list containing inputs and outcome for calculating fitness
            points[0] contains 2-D np.ndarray of all inputs

    Returns:
        r-squared fitness
    """

    x = points[0]
    y = points[1]

    if individual.invalid == True:
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    try:
        pred = eval(individual.phenotype)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        return INVALID_FITNESS,
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("evaluation error", err)
            raise
    assert np.isrealobj(pred)

    try:
        fitness = r_squared(y,pred)
        individual.nmissing = np.count_nonzero(np.isnan(pred))

        # store individual differences for lexicase
        individual.ptscores = np.absolute(y-pred)
    except (FloatingPointError, ZeroDivisionError, OverflowError,
            MemoryError, ValueError):
        individual.ptscores = np.full(len(y), np.nan)
        fitness = INVALID_FITNESS
    except Exception as err:
            # Other errors should not usually happen (unless we have
            # an unprotected operator) so user would prefer to see them.
            print("fitness error", err)
            raise

    if fitness == float("inf"):
        individual.ptscores = np.full(len(y), np.nan)
        return INVALID_FITNESS,

    return fitness,

r_squared(y, y_hat)

Calculate r-squared values

Parameters:

Name Type Description Default
y ndarray

Observed values

required
y_hat ndarray

Predicted values

required

Returns:

Type Description
float

r-squared value

Source code in src/athenage/genn/alg_setup.py
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
def r_squared(y: np.ndarray, y_hat: np.ndarray) -> float:
    """Calculate r-squared values

    Args:
        y: Observed values
        y_hat: Predicted values

    Returns:
        r-squared value
    """

    nan_mask = np.isnan(y_hat)
    y_bar = y[~nan_mask].mean()
    ss_tot = ((y[~nan_mask]-y_bar)**2).sum()
    ss_res = ((y[~nan_mask]-y_hat[~nan_mask])**2).sum()
    return 1 - (ss_res/ss_tot)

set_crossover(toolbox, crosstype)

Sets crossover type for toolbox

Parameters:

Name Type Description Default
toolbox toolbox

DEAP toolbox

required
crosstype str

specifies type to use

required

Returns:

Type Description
None

None

Source code in src/athenage/genn/alg_setup.py
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
def set_crossover(toolbox: 'deap.base.toolbox', crosstype: str) -> None:
    """Sets crossover type for toolbox

    Args:
        toolbox: DEAP toolbox
        crosstype: specifies type to use

    Returns:
        None
    """
    if crosstype == 'onepoint':
        toolbox.register("mate", grape.crossover_onepoint)
    elif crosstype == 'match':
        toolbox.register("mate", grape.crossover_match)
    elif crosstype == 'block':
        toolbox.register("mate", grape.crossover_block)